Chylomicron remnant uptake in the livers of mice expressing human apolipoproteins E3, E2 (Arg158→Cys), and E3-Leiden

Sung-Joon Lee,*† Itamar Grosskopf,*† Sungshin Y. Choi,§ and Allen D. Cooper†*§

Department of Medicine*, Stanford University School of Medicine, Stanford, CA; Division of Food Sciences,† College of Life and Environmental Sciences, Institute of Biomedical Science and Food Safety, Korea University, Seoul, South Korea; Research Institute,§ Palo Alto Medical Foundation, Palo Alto, CA; The Department of Medicine,** Tel Aviv-Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

Abstract Apolipoprotein E2 (apoE2) and apoE3-Leiden cause chylomicron remnant accumulation (type III hyperlipidemia). However, the degree of dyslipidemia and its penetrance are different in humans and mice. Remnant uptake by isolated liver from apoE−/− mice transgenic for human apoE2, apoE3-Leiden, or apoE3 was measured. In the presence of both LDL receptor (LDLR) and LDL receptor-related protein (LRP), remnant uptake was apoE3>E3-Leiden>E2 mice. Absence of LDLR reduced uptake in apoE3 and apoE3-Leiden-secreting livers but not in apoE2-secreting livers. LRP inhibition with receptor-associated protein reduced uptake in apoE3- and apoE2-secreting livers, but not in apoE3-Leiden-secreting livers, regardless of the presence of LDLR. Fluorescently labeled remnants clustered with LRP in apoE3-secreting livers only in the absence of LDLR, but clustered in livers that expressed apoE2 even in the presence of LDLR, and did not cluster with LRP in livers of apoE3-Leiden even in the absence of LDLR. Remnants were reconstituted with the three human apoE isoforms. Removal by liver of mApoE−/−/mldlr−/− mice expressing the human LDLR was slightly greater than removal in the previous experiments with apoE3>E2>E3-Leiden. Thus, in vivo, human apoE2 is cleared primarily by LRP, apoE3-Leiden is cleared only by the LDLR, and apoE3 is cleared by both. Lee, S.J., I. Grosskopf, S. Y. Choi, and A. D. Cooper. Chylomicron remnant uptake in the livers of mice expressing human apoE3, apoE2 (Arg158→Cys), and apoE3-Leiden. J. Lipid Res. 2004; 45: 2199–2210.

Supplementary key words LDL receptor • LDL receptor-related protein • type III hyperlipidemia

Apolipoprotein E (apoE) is a 34 kDa multifunctional protein that is polymorphic. The most common variant is apoE3; the second most common variant, apoE4 (Cys112→Arg), is associated with susceptibility to Alzheimer’s disease (1, 2) and coronary heart disease (3). The least-common variant, apoE2 (Arg158→Cys), is associated with type III hyperlipidemia (4–6), a disease in which impaired clearance of β-VLDL and chylomicron remnants causes these lipoproteins to accumulate in the circulation, leading to the premature development of atherosclerosis. This condition requires apoE2 homozygosity, and the penetrance is variable (7). A rare isoform, apoE3-Leiden is also associated with type III hyperlipidemia (8). The apoE3-Leiden variant contains a seven-amino-acid insertion that is a tandem repeat of residues 121–127 (9), and is associated with the dominant inheritance of type III hyperlipidemia (10).

ApoE is required for the removal of lipoproteins carrying dietary cholesterol; when apoE is absent, these particles accumulate in the blood. ApoE functions as a ligand for the LDL receptor (LDLR) (11) and the LDL receptor-related protein (LRP) (12) and binds to heparan sulfate proteoglycans (HSPG). It has been suggested that HSPG mediates the sequestration of remnants in the space of Disse and assists LRP-dependent particle uptake (13). Lipoprotein lipase (14–16) and hepatic lipase (17–19) also interact with apoE in the uptake process and may serve as ligands for LRP or as cofactors in HSPG–apoE binding. The apoE variants associated with type III hyperlipidemia share characteristics of decreased binding affinity to the LDLR, LRP, and HSPG. Compared with its binding affinity for normal apoE3, the LDLR has a slightly lower affinity for apoE3-Leiden (20–22), and a markedly lower affinity for apoE2 (Arg158→Cys, 1–2% of normal) in vitro (10, 23, 24). Both apoE2 and apoE3-Leiden have decreased binding to

Abbreviations: apoE, apolipoprotein E; DiD, 1,1′-dioctadecyl-3,3,3′, 3′-tetramethylindocarbocyanine perchlorate; HSPG, heparan sulfate proteoglycans; LRP, low density lipoprotein receptor-related protein; OG, Oregon Green; RAP, receptor-associated protein.

* To whom correspondence should be addressed.
e-mail: adc@stanford.edu

Copyright © 2004 by the American Society for Biochemistry and Molecular Biology, Inc.
LRP in cultured cells (25). HSPG binds apoE2 and apoE3-Leiden with similarly reduced affinity, as compared with apoE3, although apoE2 binds to HSPG slightly better than does apoE3-Leiden in studies of rabbit β-VLDL binding to cultured cells (25). The secretion–capture mechanism postulates that the binding to HSPG is the critical step in this process (13). Data from our laboratory suggest that binding to LRP initiates sequestration and that this occurs primarily when LDLR-mediated internalization is inoperatively (26).

ApoE2 (Arg158→Cys) and apoE3-Leiden cause similarly severe hyperlipidemia in humans (5, 7, 8), while only apoE2 causes severe hyperlipidemia in mice (20, 27, 28). We investigated the effect of human apoE variants on the removal of remnant lipoproteins using intact livers. Livers from transgenic mice expressing human apoE2, apoE3-Leiden, or apoE3, and livers from these three apoE strains without LDLR were perfused with radiolabeled or fluorescent-labeled chylomicron remnants. It was found that apoE3-Leiden was bound and internalized by the LDLR and was not sequestered, while apoE2 was sequestered but was not removed as well by the LDLR.

MATERIALS AND METHODS

Animals

Transgenic mice expressing human apoE3 in the absence of endogenous mouse apoE (mApoe−/−/htgApoE3) (29) were purchased from Taconic (Germantown, NY). Transgenic mice expressing apoE2 and apoE3-Leiden in the absence of endogenous mouse apoE (mApoe−/−/htgApoE2 and mApoe−/−/htgApoE3L), which were previously described (50), were kindly provided by Dr. Havelkes and Ko Willems van Dijk. LDLR-deficient mice (mldlr−/−) and double knockout mice homoyzous for the absence of LDLR and apoE (mApoe−/−/mldlr−/−) were purchased from the Jackson Laboratory (Bar Harbor, ME). The apoE-deficient mice (mApoe−/−) were originally a gift from Dr. E. Rubin (University of California–Berkeley) (31) and were bred in the animal facilities of the Research Institute of the Palo Alto Medical Foundation. Sprague-Dawley rats were purchased from Simonsen Laboratories (Gilroy, CA). The animals were kept at 21–25°C, with a 12 h day/night cycle and had free access to water and standard chow. The mApoe−/−/htgApoE3, mApoe−/−/htgApoE2, and mApoe−/−/htgApoE3L mice were crossed with either mApoe−/− or mApoe−/−/mldlr−/− mice. Mice expressing human LDLR under the control of the albumin promoter were generated in our laboratory and were bred with mApoe−/−/mldlr−/− to get heterozygotes for mLdlr in the mApoe−/−/mldlr−/− background. This strain contains no mouse apoE or LDLR, but has human LDLR (mApoe−/−/mldlr−/−/htgLdlr). All experiments were performed under protocols approved by the Committee on Animal Experimentation of the Palo Alto Medical Research Foundation.

Fast-performance liquid chromatography

Serum lipoproteins were separated by fast-performance liquid chromatography (FPLC) as described by Plump et al. (31). Triglyceride and cholesterol concentrations in each fraction were measured by enzymatic methods (Sigma, St. Louis, MO). Protein concentration was measured using a modified bichoninonic acid method (BioRad, Hercules, CA) with albumin as a standard (Sigma).

Western blot and real-time PCR

The LDLR, LRP, and human apoE protein levels in the mouse livers were analyzed using Western blots of liver membrane, as previously described (32), using antibodies prepared in this laboratory (33, 34). Total RNA was prepared from mouse livers using a kit from Qiagen Inc. (Valencia, CA), and reverse transcription was performed on 1 μg of total RNA using random hexamer primers and reverse transcriptase (Gibco BRL; Life Technologies, Vienna, Austria). The DNA fragments were purified, and a standard curve was prepared by carrying out real-time PCR with known amounts of cDNA and the probes. Real-time PCR was performed using 40 amplification cycles (95°C, 15 s; 55°C, 1 min; 72°C, 30 s). The primers and probe for LDLR were designed using Primer Express 1.5 (Applied Biosystems; Foster City, CA). The primers corresponded to nucleotides +461 to +481 and +572 to +589 of the mouse LDLR gene. The DNA sequence from +483 to +504 was used as a specific probe, which was labeled with a reporter dye (FAM) and a quencher dye (TAMRA). This technique measures the absolute amount of RNA present. In all samples, GAPDH mRNA levels were measured to provide an internal standard.

Preparing chylomicron remnants

Chylomicrons were obtained from lymph from the cannulated lymph ducts of rats, as previously described (35). To prepare chylomicron remnants, functionally hepatotomized rats were injected with chylomicrons (300 mg of triglyceride per kg of body weight) intravenously via the femoral vein (36). After 3 h, blood was obtained from the rats and the chylomicron remnants (d < 1.006 g/ml) were harvested by density gradient ultracentrifugation and then separated by gel filtration chromatography, as previously described (37).

Labeling chylomicron remnants

Chylomicrons were labeled with carrier-free Na125I (Amersham Life Sciences Arlington Heights, IL) using a modification (38) of the iodine monochloride method (39). Iodinated chylomicron remnants (125I-labeled chylomicron remnants) were applied to a PD-10 desalting column (Sephadex G-25; Amersham Pharmacia Biotech AB, Uppsala, Sweden) and dialyzed with PBS (pH 7.4) for 1 h to remove free iodine before use. Alternatively, chylomicron remnants were labeled with the fluorescent carbocyanine dye 1,1′dioctadecyl-3,3,3′,3′-tetramethylinodocarbocyanine perchlorate (DiD) (Molecular Probes, Inc., Eugene, OR), as described previously (26).

Trypsin treatment and apoE reconstitution of chylomicron remnants

Chylomicron remnants were digested with trypsin using a modification of the method described by Bornsznajd et al. (40). Briefly, bovine pancreatic trypsin (Sigma) was added to chylomicron remnants at a concentration of 1:100 and incubated for 2 h at room temperature. Proteinase was terminated by the addition of tosyl-lysine chloromethyl ketone, at 1.5 times the concentration of trypsin, in 0.01% EDTA. The digested chylomicron remnants were isolated by ultracentrifugation at 38,000 rpm at 10°C for 90 min, re-centrifuged under the same conditions, and dialyzed overnight against PBS with 0.01% EDTA. For the reconstitution experiment, the three types of apoE were purified following the method previously described by Weisgraber and colleagues (41, 42). Dr. Weisgraber kindly provided the human apoE3 and E2 constructs. The apoE3-Leiden construct was a gift from Dr. Louis M. Havelkes and Dr. Ko Willems van Dijk. Using purified apoE, the trypsinized remnants were reconstituted by incubating them at 37°C for 6 h. The reconstituted remnants showed similar apoE content per particle, as confirmed by SDS-PAGE. The trypsinized or reconstituted remnants were iodinated as described above. It was assumed that the iodine labeled the peptide fragments in the trypsinized remnants.
Fig. 1. Plasma lipid concentrations and lipoprotein profiles. The mApoe^{−/−}/htgApoE3 (E3), mApoe^{−/−}/htgApoE2 (E2), and mApoe^{−/−}/htgApoE3L (E3L) mice were fed a normal chow diet. Blood was obtained from each group after a 6 h fast. A: The average plasma triglyceride and cholesterol levels in the three types of mice. **, P < 0.001 compared with mApoe^{−/−}/htgApoE3; †, P < 0.05 between mApoe^{−/−}/htgApoE2 and mApoe^{−/−}/htgApoE3L. B, C: Serum was fractionated using fast performance liquid chromatography, as described in Materials and Methods. The x-axis is the fraction number in milliliters; the y-axis is the cholesterol (B) and triglyceride (C) concentrations (mg/dl). Circle, mApoe^{−/−}/htgApoE3; triangle, mApoe^{−/−}/htgApoE3L; square, mApoe^{−/−}/htgApoE2. The data are shown as the mean ± SE.
Liver perfusion

The livers of 15-week-old mice were perfused using the single-pass nonrecirculating procedure previously described by our laboratory (43). The perfusate solution contained rat erythrocytes (20% hematocrit) in DMEM and was gassed with 20% O2. The liver was maintained at 37°C thermostatically. After a 5 min perfusion to remove blood from the liver, the perfusate solution containing 125I-labeled or DiD-labeled remnants was perfused into the liver via the portal vein for 20 min at 0.5 ml/min. For kinetic experiments, samples were collected at 1 min intervals to measure the radioactivity. To prepare samples for immunohistochemistry, DiD-labeled remnants were perfused for 20 min, and then a 0.9% NaCl solution was perfused for 5 min after the 20 min perfusion. In some experiments, 4 μg/ml of receptor-associated protein (RAP) was added to the perfusate to inhibit LRP binding, as described previously (44). After the perfusion with DiD-labeled remnants, the livers were sliced into small pieces and fixed in PBS with 4% paraformaldehyde for 15 min and in PBS containing 20% sucrose for 16 h. Tissue blocks were embedded in optimum cutting temperature (OCT) compound, and 8 μm sections were cut and placed on glass slides.

Immunohistochemistry and confocal microscopy

The liver sections were first incubated in PBS + 0.1% Triton X-100 (5 min), then in PBS containing 5% BSA and 5% rabbit serum (30 min), and finally with the antibodies. LRP was stained with a previously prepared rabbit antibody that recognized the LRP amino acid sequence from 1961 to 2120. This antibody was designed to specifically recognize only the extracellular domain of LRP. After incubation with the anti-LRP, the sections were incubated with Oregon Green (OG)-labeled goat anti-rabbit antibody. Digital images of the stained sections were obtained using a Molecular Dynamics Multiprobe confocal laser microscope (Sunnyvale, CA). DiD was excited at 644 nm, and OG was excited at 488 nm. A filter 660 nm was used to collect the DiD emissions (channel 1: red) and a 500–560 nm filter was used for the OG emissions (channel 2: green). Nitrocellulose membranes incubated with either OG-labeled antibody or DiD-labeled remnants were used to check for bleed-through between the two wavelengths. Colocalized pixels were determined and the number of clusters counted as described previously (26).

Data analysis

The data are expressed as the mean ± SD unless otherwise indicated. Student’s t test was performed for two-group comparisons. Values were considered statistically significant at P < 0.05.

RESULTS

Plasma lipid levels

Plasma lipid concentrations were measured after 6 h of fasting in the blood of animals fed a normal chow diet.
The \(m\text{Apo}^+/-/htg\text{Apo}2 \) and \(m\text{Apo}^+/-/htg\text{Apo}3L \) mice developed hyperlipidemia, but to different degrees; mild hyperlipidemia was present in \(m\text{Apo}^+/-/htg\text{Apo}3L \) mice, and more-severe hyperlipidemia was present in \(m\text{Apo}^+/-/htg\text{Apo}2 \) mice. As previously reported (30), for mice on a normal diet, fasting plasma triglyceride and cholesterol levels were significantly higher in \(m\text{Apo}^+/-/htg\text{Apo}2 \) mice than in \(m\text{Apo}^+/-/htg\text{Apo}3 \) mice and levels in \(m\text{Apo}^+/-/htg\text{Apo}3L \) mice were significantly elevated as compared with either \(m\text{Apo}^+/-/htg\text{Apo}3 \) or \(m\text{Apo}^+/-/htg\text{Apo}3L \) mice (Fig. 1A). VLDL triglyceride and VLDL–intermediate density lipoprotein cholesterol levels were increased in \(m\text{Apo}^+/-/htg\text{Apo}2 \) mice and more moderately increased in \(m\text{Apo}^+/-/htg\text{Apo}3L \) mice (Fig. 1B, C). HDL lipids were only moderately altered. These transgenic mice expressing human apoE2 and apoE3-Leiden appeared to have altered apoB lipoprotein metabolism and accumulate triglyceride-rich lipoproteins.

LDLR, LRP, apoE proteins, and mRNA levels

The LDLR, LRP, and apoE levels in liver membranes were quantified by Western blotting (Fig. 2A), which revealed that LDLR, LRP, and apoE were present at similar levels in liver membranes from all three strains of transgenic mice. LDLR expression was quantified using real-time PCR (Fig. 2B), and LDLR mRNA levels were normalized to GAPDH mRNA. The amount of LDLR mRNA was increased by 40% and 30% in \(m\text{Apo}^+/-/htg\text{Apo}2 \) and \(m\text{Apo}^+/-/htg\text{Apo}3L \) livers, respectively, but the difference was not statistically significant as compared with \(m\text{Apo}^+/-/htg\text{Apo}3 \) livers. Simi-
lomeron remnants were prepared from normal rats and perfused into the livers of human apoE3, apoE2, and apoE3-Leiden mice using a single noncirculating perfusion. In each perfusion, the rate of removal reached a steady state after \(\sim 10 \) min, and the rate of removal per pass was determined at this stage. The nonspecific removal measured using radiolabeled BSA was \(\sim 10\% \) per pass as previously described (43). When the livers of the three apoE-variant mice were perfused with chylomicron remnants (4 \(\mu \)g protein/ml perfusate), the removal of \(^{125}\text{I} \) was \(\sim 45\% - 50\% \) per pass for all three liver types, and did not differ significantly in the three (data not shown). This demonstrated that the secreted apoE isoforms did not interfere with normal remnant uptake.

Uptake of trypsinized chylomicron remnants by perfused livers in the three strains of apoE transgenic mice

To examine the effect of hepatic apoE variants on remnant uptake, the apoE from the remnant particles was depleted by trypsinization, as described previously (44). The trypsinized remnants lacked an apoE protein band on SDS-PAGE gels (Fig. 2C). Under electron microscopy, the trypsinized remnants were smaller than chylomicrons and of a size similar to that of normal remnants. The structural integrity of the trypsinized remnants was not distinguishable from the nascent remnant particles (data not shown). These trypsinized remnants, now free of normal apoE, were radio labeled with \(^{125}\text{I} \). The \(^{125}\text{I} \)-labeled the small peptides.

It has previously been shown that such particles, when perfused at various concentrations, are efficiently removed by normal livers but not by the livers of \(m\text{Apoe}^{-/-} \) mice (44). These particles were perfused into the livers of \(m\text{Apoe}^{-/-} \ HTGApoe3, m\text{Apoe}^{-/-} \ HTGApoe2, \) and \(m\text{Apoe}^{-/-} \ HTGApoe3L \) mice. At a concentration of 40 \(\mu \)g cholesterol/ml perfusate, differences in remnant removal, as measured using the \(^{125}\text{I} \) removal per pass, were apparent and were \(\sim 40, 30, \) and \(20\% /\text{pass} \) for \(m\text{Apoe}^{-/-} \ HTGApoe3, m\text{Apoe}^{-/-} \ HTGApoe2, \) and \(m\text{Apoe}^{-/-} \ HTGApoe3L \) mice, respectively (Fig. 3A). At a lower concentration (20 \(\mu \)g cholesterol/ml perfusate), the three types of liver cleared particles with \(\sim 10\% /\text{pass} \) greater efficiency, resulting in rates of \(^{125}\text{I} \) removal of \(50, 35, \) and \(25\% /\text{pass} \), respectively (Fig. 3B). At low remnant concentrations (6 \(\mu \)g cholesterol/ml), the removal was greater by \(m\text{Apoe}^{-/-} \ HTGApoe3 \) livers than \(m\text{Apoe}^{-/-} \ HTGApoe3L \) and \(m\text{Apoe}^{-/-} \ HTGApoe2 \) livers (Fig. 3C). Therefore, at high remnant concentrations, the rate of removal was related to the degree of hyperlipidemia of each mouse type, while at trace concentrations, removal was similar in both \(m\text{Apoe}^{-/-} \ HTGApoe3L \) and \(m\text{Apoe}^{-/-} \ HTGApoe2 \) livers. This indicated that both the LDLR and the LRP pathways could facilitate rapid remnant removal; we therefore performed the rest of the experiment using the low concentration (6 \(\mu \)g cholesterol/ml) to test the independent contributions of the two pathways.

Effect of RAP on remnant removal

To investigate the contributions of the different pathways, the LRP pathway was blocked by adding RAP (4 \(\mu \)g/ml) during 6 \(\mu \)g cholesterol/ml of trypsinized remnant per-
This concentration largely inhibits the LRP pathway and does not affect LDLR activity, as previously described by our group (43, 44), or in cell culture (21). The addition of RAP inhibited remnant uptake in both mApoE−/−/htgApoE3 and mApoE−/−/htgApoE2 livers, whereas it did not affect remnant uptake in mApoE−/−/htgApoE3L livers (Fig. 3D). These data suggest that the LRP pathway does not mediate remnant removal in the mApoE−/−/htgApoE3L livers. Furthermore, it suggests that in mApoE−/−/htgApoE2 livers, the LRP pathway is predominant in remnant removal.

Na-heparin (4 μg/ml) was added to the perfusate to examine the role of HSPG in remnant removal. By occupying the HSPG binding site, heparin reduces the removal of ligands, such as FGF, that require HSPG for removal (45, 46). Unlike RAP addition, 4 μg/ml of heparin affected remnant removal rates only marginally in mice deficient in LDLR (data not shown).

Remnant removal by livers lacking mouse apoE and LDLR but expressing human apoE3, apoE2, or apoE3-Leiden

Remnant removal by LDLR-deficient, mouse apoE-deficient livers that expressed the apoE variants was studied as in the previous section. The removal rates were ~28–30%/pass for mApoE−/−/mldlr−/−/htgApoE3 and mApoE−/−/
The lines are power trend curves generated using Excel software. The preceding studies relied on the mouse LDLR for lipoprotein removal. To exclude a species-specific apoE–LDLR interaction, the uptake of remnants by livers expressing the human LDLR was investigated. To do this, trypsinized remnants were reconstituted with each apoE type, and these particles were perfused into the livers of apoE and LDLR knockout mice containing the human LDLR under the control of the albumin promoter (mApoe^{-/-}/mldr^{-/-}/htgLdlr). The reconstituted particles contained similar amounts of apoE per particle on SDS gel electrophoresis (0.5–0.7 μg apoE per μg cholesterol; data not shown). The uptake of remnants via the human LDLR was similar to the uptake via the mouse LDLR (Fig. 6). Remnant removal was ~50, 40, and 33% per pass for apoE3, E3-Leiden, and E2 particles, respectively. This was similar to the results with mouse LDLR, although there was a reverse in the relative potency of apoE2 and apoE3-Leiden livers.

Uptake of reconstituted remnants with purified apoE in the mApoe^{-/-}/mldr^{-/-}/htgLdlr mouse

The preceding studies relied on the mouse LDLR for lipoprotein removal. To exclude a species-specific apoE–LDLR interaction, the uptake of remnants by livers expressing the human LDLR was investigated. To do this, trypsinized remnants were reconstituted with each apoE type, and these particles were perfused into the livers of apoE and LDLR knockout mice containing the human LDLR under the control of the albumin promoter (mApoe^{-/-}/mldr^{-/-}/htgLdlr). The reconstituted particles contained similar amounts of apoE per particle on SDS gel electrophoresis (0.5–0.7 μg apoE per μg cholesterol; data not shown). The uptake of remnants via the human LDLR was similar to the uptake via the mouse LDLR (Fig. 6). Remnant removal was ~50, 40, and 33% per pass for apoE3, E3-Leiden, and E2 particles, respectively. This was similar to the results with mouse LDLR, although there was a reverse in the relative potency of apoE2 and apoE3-Leiden livers.

Clustering of chylomicron remnants in the space of Disse

Previously, we reported that chylomicron remnants bound to LRP clustered in the space of Disse (26). If the postulate of the previous studies is correct, the mApoe^{-/-}/htgApoe3L mice should not have remnant clusters with the LRP, while mApoe^{-/-}/htgApoe2 livers should rely heavily on clustering for remnant removal, even in the presence of LDLR. Livers were perfused with DiD-labeled, trypsinized remnants (6 μg cholesterol/ml perfusate), and sections were stained with rabbit anti-LRP antibody followed by OG-labeled goat anti-rabbit IgG, as previously described. In both mApoe^{-/-}/htgApoe3 and mApoe^{-/-}/htgApoe2 livers, distinct clusters of remnants appeared on the surface in close proximity to endothelial cells, similar to the pattern previously shown in livers of all mldr^{-/-} mice (26) (data not shown). There were 1.52 ± 0.33 and 3.00 ± 0.40/10,000 μm² remnant clusters for apoE3 (n = 6) and apoE2 (n = 5), respectively. When LDLR was absent, the number of clusters increased significantly to 2.06 ± 1.17 (n = 4) and 4.57 ± 0.92/10,000 μm² (n = 5) for apoE3 and apoE2 livers, respectively. Virtually no clusters were found in the apoE3-Leiden livers (0.36 ± 0.25/10,000 μm², n = 13) in the presence or absence of LDLR. In mApoe^{-/-}/mldr^{-/-}/htgApoe3L mice (Fig. 7), the small amount of remnant fluorescence was distributed diffusely throughout the cytosol. The cellular location of LRP also differed in the livers of mApoe^{-/-}/mldr^{-/-}/htgApoe3L mice; LRP was relatively evenly distributed as thin strings on the cell surface, with little in the cytosol, and was not colocalized with remnant clusters. No apparent difference in the clustering pattern was found between mApoe^{-/-}/mldr^{-/-}/htgApoe3 and mApoe^{-/-}/mldr^{-/-}/htgApoe2 livers; the LRP on the cell surface was colocalized with the clusters. LRP was also sometimes found in the nucleus. These results provide further support for the postulate that there is defective remnant uptake by LRP in mApoe^{-/-}/mldr^{-/-}/htgApoe3L.
mice because of reduced binding to the LRP and that apoE2 mice rely heavily on the LRP for removal, even in the presence of the LDLR.

DISCUSSION

The results of the present study establish that lipoprotein particles containing human apoE3, like those with mouse and rat apoE, are efficiently removed by the liver via two quite distinct pathways. Removal is initiated by a process requiring either the LDLR or the LRP. By contrast, livers secreting two apoE variants, apoE2 and apoE3-Leiden, remove remnants primarily by only one of the pathways. The LDLR pathway is the most efficient and leads to rapid internalization of the whole particle; the LRP-mediated pathway is somewhat less efficient, and initially leads to the sequestration of particles in the space of Disse in hepatic sinusoids. It is now established that apoE3-Leiden is removed only by the LDLR pathway while apoE2 is removed primarily by the LRP-mediated pathway.

Previously, we demonstrated that at low remnant concentrations, there is efficient removal of remnants regardless of the pathway used (43, 44). Consistent with this formulation, in the current experiments, at low remnant concentrations, all three apoE variants mediated removal efficiently. As the particle concentration increased, differences in the efficiency of removal mediated by the variants emerged. ApoE3 was the most effective, followed by apoE3-Leiden and then apoE2. It has been reported that apoE from the liver is more effective than peripheral apoE in mediating liver uptake (47). In the system used in these experiments, the contribution of apoE acquired in the periphery was eliminated and all uptake was dependent on the acquisition of apoE in the liver, where the level of expression of apoE was comparable among the strains. To further exclude effects of apoE origin or concentration in the liver, experiments using recombinant apoE and livers that expressed only the human LDLR were carried out. In these experiments, both of the variants were also less effective than apoE3, while apoE2 was removed somewhat more efficiently than apoE3-Leiden. This may reflect the human state more closely and established that the differences between the strains were not due to a difference in the amount of apoE on the particle or in the liver, or to a different affinity of the mouse and human LDLRs for the different isoforms.

Remnant removal by apoE3-Leiden–secreting livers is insensitive to RAP, and remnant removal by apoE2-secreting livers is much less sensitive to the presence or absence of the LDLR than is remnant removal by apoE3-secreting livers. Thus, it is concluded that apoE2 is removed primarily by the LRP. This is consistent with studies that demonstrated no binding of this protein to the LDLR in cultured cells (21). Interestingly, although it was reported that there is virtually no binding of apoE2 to the LDLR (48), in the current experiments, elimination of the LDLR further decreased the rate of removal of apoE2 particles moderately, suggesting that some LDLR-mediated removal occurred in vivo.

Type III hyperlipidemia is characterized by elevated plasma lipid levels resulting from the accumulation of chylomicron remnants and β-VLDL. The disease is related to
genetic defects of apoE, which is the ligand involved in chylomicron remnant uptake, because several naturally occurring apoE alleles are associated with the syndrome (4–6, 49). In addition to apoE2 (Arg158→Cys) and apoE3-Leiden, other rare apoE variants, such as apoE3 (Arg142→Cys), apoE2 (Lys146→Gln), and apoE2 (Lys146→Asn), are associated with this disease. ApoE2 causes recessive hyperlipidemia in humans and is of variable penetrance; when present, the hyperlipidemia is generally severe. In mApoE+/−/htgApoE2 mice, hyperlipidemia was present uniformly and was more severe than in mApoE+/−/htgApoE3L mice. The species difference suggests that the mouse normally has less capacity for LRP-mediated removal relative to LDLR-mediated removal than humans or that the LRP pathway is less effective in mice.

Other studies have found that the low level of hepatic lipase present in the mouse accounts in part for the less-efficient LRP-mediated removal (50). In humans and rats, unlike the mouse, hepatic lipase is bound primarily to the liver cell surface and does not occur in the circulation. Therefore, it is easy to envision how a low-affinity pathway with a relatively high capacity could be very sensitive to changes in the rate of production of the particles, and a modest increase in the production of particles or other competitors for removal by LRP could easily result in conversion from the normal state to a severe abnormality.

By contrast, removal by apoE3-Leiden was profoundly sensitive to the presence of the LDLR. Because apoE3-Leiden-mediated removal was not sensitive to RAP, it is reasonable to conclude that apoE3-Leiden removal does not proceed to any appreciable extent via LRP. This is a bit surprising in light of binding studies, which did demonstrate some binding of apoE3-Leiden to LRP (51). Perhaps with a low-affinity ligand, even a modest further reduction in the affinity is sufficient to eliminate any physiologically relevant binding. The fact that the dyslipidemia of apoE3-Leiden is relatively mild, but dominant, suggests that apoE3-Leiden may interfere with the ability of normal apoE to interact with receptors and that some remnant removal always occurs via LRP. Whether this represents a subpopulation of remnant particles that cannot be removed by the LDLR requires further investigation.

ApoE also binds to HSPG. This may either assist the LRP-dependent pathway (52–54) or mediate non-LRP-dependent HSPG uptake (55). Heparinase injection into the liver (56) eliminates remnant removal but disrupts hepatic architecture. Heparin incubation with macrophages (57) reduces chylomycin remnant uptake, suggesting the importance of HSPG in remnant catabolism (26). Characterization of HSPG binding to different apoE variants demonstrated that the HSPG binding activity is decreased by mutations of Arg-136, Arg-142, Arg-145, and Lys-146 (58). It was suggested that apoE variants known to have defective HSPG binding activity are strongly associated with dominant inheritance and decreased onset age of type III hyperlipidemia. However, the LDLR binding site and the HSPG binding site in apoE overlap, and variants that have reduced HSPG binding also have low affinity for the LDLR. Heparin, at a concentration that could partially saturate the HSPG binding sites on apoE, lowered remnant removal moderately; but a higher concentration of heparin, at which cell binding sites would be completely saturated, could not be studied, for technical reasons. Thus, our experiments do not exclude the role of HSPG in the remnant removal process.

One of the most striking results was seen in the experiment using fluorescent remnants. Normally, there are few clusters of fluorescence in the liver following the perfusion of labeled remnants unless the LDLR is absent. In the livers of apoE2 mice, clusters that colocalized with LRP were abundant, and this seemed to be the primary pathway for removal. There was some direct uptake of fluorescent remnants in the livers of apoE2 mice, possibly the result of residual binding and internalization by the LDLR or of direct uptake by the LRP. In the apoE3-Leiden mice, there were virtually no clusters, even in the absence of the LDLR. This adds strong support to the evidence provided by the removal experiments that defect with apoE3-Leiden is a failure to bind to the LRP. Together, these results strengthen the observation that sequestration in the space of Disse is a physiologic phenomenon.

In summary, these experiments studied the removal of remnant lipoproteins mediated by human apoE variants using intact livers. The results suggest that the degree of interaction of apoE binding to the lipoprotein receptors, LDLR and LRP, explains the variability in the inheritance of hyperlipidemia. At low lipoprotein concentrations, there is little lipoprotein accumulation. In both humans and mice, the inability of apoE3-Leiden to bind to the LRP causes mild, but dominant, hyperlipidemia. In the mouse, because the LDLR removal pathway is dominant, the hyperlipidemia of apoE2 becomes more profound. This implies that in humans, the LRP may play a relatively greater role in remnant removal, and that only when it is saturated does hyperlipidemia become manifest.

We thank Dr. Louis M. Havekes and Dr. Ko Willems van Dijk for providing the apoE2 and apoE3-Leiden mice and the apoE3-Leiden construct. We also thank Dr. Karl Weisgraber for the kind gift of the apoE3 and apoE2 constructs. This work was supported by National Institutes of Health Grants DK-38718 (A.D.C.) and HL-58037 (S.Y.C.), the Stanford University Digestive Disease Center (Grant DK38707) (A.D.C.), Korea University Grant for Young Scientists (S.-J.L.), and a grant-in-Aid from the American Heart Association, Western Affiliate (S.Y.C.).

REFERENCES

